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The modal interpretation of quantum mechanics is an attempt to relate the 
mathematical formalism of quantum mechanics to physical properties ("be- 
ables," "existents") in such a way that the property attribution reflects the 
mathematical structure as much as possible--no additional structure is superim- 
posed on the quantum mechanical formalism. In this article the main features of 
the modal interpretation are explained and the question is discussed of how this 
interpretation deals with some well-known problems of quantum measurement 
theory (relativistic covariance and the question of whether or not there is 
superluminal causation). 

1. I N T R O D U C T I O N  

The modal  interpretation tries to avoid the notor ious  interpretat ional  
problems of  quan tum mechanics by construing the theory  as not  being 
about  measurement  outcomes,  but  about  the properties o f  physical systems 
("be-ables ,"  "existents"), and as valid in the macroscopic  as well as in the 
microscopic domain.  In  it, measurements  are treated as physical interac- 
tions and the concept  "measurement"  therefore does not  have a fundamen-  
tal status. According to the modal  interpretat ion (in the version explained 
here), quan tum mechanics deals with what  there /s, also in situations in 
which no measurements  are being made. 

The central idea o f  the new interpretat ion is to stay as close as possible 
to the mathematical  formalism and to look upon  the mathemat ical  states as 
codifications o f  physical properties and their probabilities. Two preliminary 
observations are helpful here. 
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First, mutually exclusive physical properties correspond to orthogonal 
projection operators in the formalism; second, if W is the reduced density 
operator of a partial system (obtained by "partial tracing" from the pure 
state of a compound system), W has a (diagonal) decomposition in terms 
of such orthogonal projections which looks like a classical mixture: 

w= Ep, l ,i> <g.,l, 
i 

This decomposition is almost always unique (the case of nonuniqueness 
will be discussed later). 

This suggests that it is possible to attribute to the partial system one of 
the properties corresponding to the projectors [~ki ) (~';[ with probability Pi. 
However, within the standard interpretation there is a well-known objec- 
tion to this suggestion. The problem is that the partial system, if it really 
has the property corresponding to [~j)(~:1, according to the traditional 
rules must be in the pure state [~bj ). Analogously, the remainder of the total 
system must also be in some pure state if it possesses some distinct 
property. But then the total state necessarily is the product state of the two 
partial pure states. This is in conflict with our initial assumptions: if the 
total state has the form I~J ) | I~J ), the reduced density operator of the first 
partial system is [~bj)(~j[ and not EiP,[~i> <~k,[. 

To sidestep this objection, we now propose to change the rules which 
give a physical interpretation to the mathematical formulas of  quantum 
mechanics. In particular, we propose to drop the idea that a system can 
only possess a well-defined value of a physical magnitude if it is described 
by an eigenstate of the corresponding observable. Instead, we shall formu- 
late a new interpretative rule according to which the mathematical state in 
a probabilistic manner relates to "be-ables" (objectively existing physical 
properties) also if this state is not an eigenstate of the corresponding 
Hermitian operators. The basic idea of this way of interpreting the formal- 
ism has been put forward, with some variations, by several authors (van 
Fraassen, 1981, 1991; Kochen, 1985; Healey, 1988; Dicks, 1989a,b). 

2. THE MODAL INTERPRETATION OF QUANTUM MECHANICS 

Consider the formal quantum mechanical description of a composite 
physical system. The total Hilbert space can be decomposed: ~ff = 
~:l | (the following is meant to apply to all such decompositions). 
According to a well-known theorem (Schmidt, Schr6dinger) there is a 
corresponding biorthonormal decomposition of every state vector in A:: 

[~) = Z ck I~kk ) | IRk ) (1) 
k 
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with !Ok) in ovf,, IRk) in Jr2, (OilOj)=f; j ,  and (R i lR j )=b i j .  This 
decomposition is unique if there is no degeneracy among the values of Ick [2. 

The modal interpretation gives the following physical meaning to this 
mathematical state. 

The partial system represented by vectors in ~vf~ possesses exactly one 
of the physical properties associated with the set of projectors {l~kk ) (Ok ]} 
(and analogously for the correlated property of the environment 
represented in ~fz)- It follows that all physical magnitudes represented 
by maximal Hermitian operators with spectral resolution given by 

aklOk) (~k] are applicable to the system and possess one of their 
possible values, say at. The probability that the lth possibility is actually 
realized is given by icl12. 

In the case of degeneracy, that is, Icjl 2 = Ic l 2, for i , j ~ l  l (I~ is a set of 
indices), the one-dimensional projectors have to be replaced by more-di- 
mensional projectors PI = ~;~lx I0;) (0~ 1; the physical properties now cor- 
respond to these projectors. The class of applicable physical magnitudes 
now contains only nonmaximal Hermitian operators characterized, 
through their spectral resolution, by the set of these more-dimensional 
projectors. The probability of value a~ is given by ~ ; ~  ]ci ] z. 

By means of this interpretation rule a number of definite physical 
properties are ascribed to partial physical systems. It is important to note 
that such properties are ascribed even if the total theoretical state is a 
superposition of eigenstates of the corresponding observables. By contrast, 
in the usual interpretation a definite physical property is only attributed if 
the mathematical state is an eigenstate of the pertinent observable. This 
traditional link between properties and states gives rise to the need for the 
notorious "collapse of the wave function" in a measurement. The argument 
is that if a definite result is obtained in a measurement, the state immedi- 
ately after the measurement should reflect the presence of the correspond- 
ing property and should therefore be the appropriate eigenstate. The 
measurement must ~---~ -~ " ~.~.,,o,~ reduce a transition--the collapse--from a 
superposition of eigenstates to one of the terms in that superposition. 

In contradistinction to this, in the interpretation proposed here the 
presence of a physical property is not in conflict with a theoretical 
description by means of a superposition. In our interpretation the situation 
after a measurement will in general be described by a superposition of the 
form (1), with [Ok ) denoting states of the object system and IRk ) states of 
the measuring device ("pointer position states"). The physical meaning of 
this mathematical state is that one of the "pointer positions" is actually 
realized. 

There is therefore no need for the projection postulate, or collapse of 
the wavefunction. The evolution of the theoretical state is assumed to be 
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unitary (and time-reversible) at all times, in accordance with the 
Schr6dinger equation (or one of its generalizations). Measurements are 
treated as physical interactions; measuring device and object system are 
both treated by quantum mechanics. 

It is important to note the difference between this proposal for a new 
physical interpretation of the formalism of quantum mechanics and "hid- 
den-variables theories." In hidden-variables theories the standard interpre- 
tation of the quantum formalism, in terms of probabilities of measurement 
outcomes, is accepted. "Hidden variables" are then introduced as parame- 
ters that obey a theory at a deeper level, about which the quantum 
formalism has nothing to say (except that the statistical predictions of 
quantum mechanics should be respected). In contrast to such proposals, 
the interpretation expounded here posits a direct link between the quantum 
formalism and physical properties; so here quantum mechanics does make 
pronouncements about the properties in question--they are not "hidden." 
The quantum state completely determines which physical magnitudes apply 
to a system (and which magnitudes do not). Admittedly, the interpretation 
is indeterministic: the state only yields probabilities for the various possible 
values of these physical magnitudes. But it is not part of the interpretation 
that there exists a more precise (perhaps deterministic) description which is 
hidden beneath the level of quantum mechanics. From the point of view of 
the modal interpretation, quantum mechanics is an inherently stochastic 
theory; it could well be a fundamental theory that says all there is to be 
said about the values of physical magnitudes. 

3. CONDITIONAL PROBABILITIES 

The probabilities specified by the interpretational rule are not condi- 
tional on values of physical magnitudes. They only depend on the total 
mathematical state. It is natural to ask whether conditional probabilities 
can be defined that do pertain to the values of physical magnitudes and 
their evolution. Given that a system possesses value a; of physical magni- 
tude A at time tl, can the question be answered: What is the probability of 
the system possessing value bj of magnitude B at time t2? 

To make the question meaningful within the modal interpretation, we 
must obviously suppose that at time tl the state has a biorthonormal 
decomposition in terms of eigenstates of A, and at t2 in terms of eigenstates 
of B: 

E ci[ai)@lXi)"+E 4lbj > | [YJ ) 
i j 

The arrow stands for the time evolution U(t~, t2); [Xi) and I Yj) represent 
the environment states at t~ and t2, respectively. According to the rule that 
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we have proposed, the (unconditional) probabilities for the presence of  
value ai at t, and bj at t2 are Ic~ 12 and 1412, respectively. 

Conditional probabilities P(bj [ai) (which in this case are the same as 
transition probabilities) should satisfy the relation 

P(bj) = Z P(ai)P(bj la,) 
i 

That is, the several terms in the superposition at time t 1 should contribute 
to the probability of bj without interfering with each other. A situation in 
which this condition is fulfilled obtains if the state at time t2 contains a 
"memory" of  the separate terms in the superposition at tl. Thus, suppose 
that a more detailed account of  the evolution is provided by 

E ~,la,> | Ix,> = g ~,la,> | Ix,> | lyo> 
i i 

= Z ~,<b~la,>lb~ > | Ix,> | lyo> 
i , j  

-~ g c,<b~la,>lb~>| (2) 
i , j  

This represents the case in which part of the environment (represented by 
{[xi)}) "records" (retains traces of) the physical situation at tl. The 
probability for bj at time t 2 is now given by Zi ]G (bj ]a i)12 (remember that 
the partial system states occurring in the decomposition must be normal- 
ized before the interpretation rule can be applied). So we find 

~ )  = E ~a,) l<~la,>l  2 
i 

and 

P(bj[a~) = [(bj[a~ )[ z (3) 

In this case it is therefore indeed possible to conditionalize on the values of  
the physical quantities which are present in the initial situation; the 
conditional probabilities are given by the usual expression for transition 
probabilities. 

We thus find a justification, within the modal interpretation, for a 
number of prescriptions of the usual approach. For example, according to 
the modal interpretation, the situation after a preparation procedure will 
generally be described by a state of the form of the left-hand side of  
equation (2). The situation after a subsequent measurement can be repre- 
sented by the right-hand side of (2). Equation (3) now gives the probability 
of  measurement result bj, given outcome a; of  the preparation procedure 
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(this outcome has been recorded by means of Ixg )). We thus find the usual 
values of probabilities of measurement outcomes, but with a very different 
state ascription. In the modal interpretation the full superposition is 
maintained, whereas the traditional approach takes it that after the prepa- 
ration the system is described by one of  the eigenstates lag). 

If  some terms in the superposition at t t (reflecting the various possible 
values of  quantities at tl) completely merge during the evolution, with the 
result that no traces of the corresponding properties are left at t2, the 
information that among those properties a,. was realized at tl does not have 
a discriminating value; the conditional probabilities P(bjlag ) must therefore 
be equal for all lag > which merge. For example, if the evolution takes the 
form 

E cg,k[ai,k>Q[x,,k>QlYo> 
i,k 

-~Ecgkla, k > | IX~ > | lYo> 
g,k 

= E c,,k (bjlag,k)lbj)|174 
i,k,j 

- ~  E cg,k <bj lai,k >lbj > | > | > (4) 
g,k,j 

the conditional probability P(bj lag,k) cannot depend on i. Simple calculation 
shows that 

P(bj[ai,D - [ Eicik<bjlagk>l 2 

4. MODALITY 

The interpretation is "modal"  in the following sense. If  the total state 
has the biorthonormal form 

k 

with 0 < Ick 12 < 1, one way of expressing this is to say that the partial 
systems possess the attributed values of  physical magnitudes contingently, 
with a chance smaller than one. If  the total state is 

IV) = I~b, ) | IR, ) 

the partial systems possess their properties necessarily, with chance 1. 
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A distinction can thus be made between different modalities of the 
same actual state of affairs: a value of a physical magnitude can be there 
contingently or necessarily. 

A less "metaphysical" way of expressing the same thing is that the 
physical properties which are actually present at one instant do not 
completely fix the theoretical state. For the determination of the state, 
information is needed not only about what is actual at a given instant, but 
also about what could have been the case. However, differences in "modal- 
ity" of the same actual situation generally do have empirical consequences 
for the situation at other moments. If there are interactions, the evolution 
of the superposition [~) = ~k ck [~kk ) | IRk ) will in general be very differ- 
ent from the evolution of I~P) = 1~'l) @ [Rt). Through the interpretational 
rule this will lead to different sets of applicable physical magnitudes, and 
thus to different actual states of affairs. 

5. CONTEXTUALITY 

The properties attributed to physical systems are contextual: they 
depend, via the biorthonormal decomposition, on the total state of the 
system and its environment. This has a number of consequences that are 
unexpected from a classical point of view. 

First, there can be situations in which a system taken as a whole has 
properties that do not simply follow from the properties which are found 
if the system is analyzed in terms of its parts. Consider, for example, the 
following theoretical state: 

ci la, > | [bi > | leo > 
i 

with (a~[aj)= (b~[by)= 6ij. This state represents a compound system, 
consisting of two parts, in a passive environment. The two partial systems 
taken by themselves possess properties defined by the given decomposition. 
But the total system has with probability 1 the property defined by the 
projection operator on the vector ~,. ci [ai ) | [b~ ). On the level of physical 
quantities there is no simple connection between these value attributions. 
Knowledge of the properties of the total system only gives probabilistic 
information about the possible properties of the parts; given properties of 
the parts are compatible with many possibilities for the properties of the 
whole. 

Second, the question of what physical magnitudes apply to a system 
can only be answered if a hyperplane is specified upon which the state is 
considered (because the total state is only defined with respect to such a 
hyperplane). As an illustration of this contextuality consider a particle-- 
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A 

E2 

x 

Fig. 1, A particle which may be detected in space-time point A. Ya and Z 2 are two space like 
hyperplanes; on E, the state is c~]~l )lg) + c2[r �9 

represented by a nonlocalized wave function ] r  interaction with a 
localized detector (metastable atom with excited state le) and ground state 
Ig))' The evolution is given by 

I ~ o ) |  + c2]~k2)le) 

with Ir localized at the detector position and [~b2) "elsewhere." That 
means (see Fig. 1) that on hypersurface E~ the system is localized at A or 
"elsewhere." On hypersurface E2 the system is not localized. The appli- 
cability of physical magnitudes (concepts) is therefore dependent on the 
hypersurface on which the system is being considered. 

6. COVARIANT DESCRIPTION OF MEASUREMENTS 

The observation about the hyperplane dependence is important for the 
relativistic treatment of measurement. The conventional treatment of mea- 
surement makes use of the projection postulate and an instantaneous 
collapse of the wave function. This leads to inconsistencies in the context of 
relativity theory, because different observers use different simultaneity 
relations to define what "instantaneous" means. They therefore may at- 
tribute different and mutually inconsistent wave functions to a system. For 
example, an observer who uses E1 (Fig. 1) as his simultaneity hyperplane 
may attribute a wave function to the particle which is everywhere zero 
except in the neighborhood of A; whereas an observer associated with E2 
assigns a wave function on his hyperplane which is nowhere zero. This 
leads to an inconsistency because Et and E2 intersect. One way of avoiding 
such inconsistencies is to assume that there is an absolute simultaneity 
relation governing the collapses; but this of course conflicts with the basic 
tenets of relativity. 
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The modal interpretation avoids these well-known problems by deny- 
ing that a collapse ever takes place. The full superposition, with its 
unambiguous space-time evolution, is retained at all times. But the meaning 

of this theoretical description in terms of physical properties is only given 
by the interpretation rule if a complete space-time hyperplane is specified. 
As illustrated in the figure, application of the interpretation rule to different 
but intersecting hyperplanes can lead to the attribution of completely 
differing physical properties. 

However, the description furnished by the modal interpretation is 
Lorentz covariant. This is so because it is an objective fact which hyper- 
planes are associated with which attributions of physical magnitudes (of 
course, hyperplanes are themselves Lorentz-invariant space-time objects). 
There can never be a situation in which different observers reach different 
conclusions with respect to one and the same hyperplane. Whether or not 
the interaction with the detector has resulted in a change in concepts 
applicable to the particle system is objectively determined once the hyper- 
plane has been specified on which the state is considered. 

7. SUPERLUMINAL CAUSATION? 

It follows from the remarks just made that if part of a hyperplane is 
shifted so that it passes the interaction region (see Fig. 1), which concepts 
are applicable changes over the whole hyperplane. This seems to pose the 
threat of superluminal causation: if the hyperplane is taken to define a 
simultaneity relation, the applicability of concepts changes instantaneously. 

However, it is not at all clear whether the "applicability of concepts" 
can be viewed as something which causally operates or propagates. The 
hyperplanes s and Z2 in Fig. 1, with different applicable physical magni- 
tudes, intersect each other. This rather suggests that there are no local 

changes in their region of overlap, which is at spacelike separation from the 
detection event. Of course, other regions of overlap could have been chosen 
by considering hyperplanes of other shapes. 

Moreover, every inherently stochastic theory for measurement out- 
comes which respects conservation laws exhibits similar features. Here, by 
"inherently stochastic theory" a theory is meant which does not suppose 
the existence of an underlying hidden-variables structure. Think, for in- 
stance, of a theory which makes predictions about the detection probabili- 
ties of a particle and does not operate with the assumption that there exist 
underlying particle trajectories. If the theory is about one particle (this is 
the "conservation law"), detection of a particle at any position seems 
necessarily to lead to an instantaneous "collapse" of detection probabilities 
elsewhere. If the theory is taken as a fundamental description, the particle 
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cannot be considered as characterized by any position before the interac- 
tion, but it does have a position afterward. Just as in quantum mechanics, 
there thus is an instantaneous change in applicable concepts. It is therefore 
not clear whether this feature must be seen as a consequence of superlumi- 
nal causation; it may rather reflect characteristics connected with funda- 
mental indeterminism. 

In order to have prospects of making progress, we need a clear 
criterion to assess whether or not there is a cause-effect relation in any 
given situation. Because the issue is whether or not there can be superlumi- 
nal causation between separate regions in space-time, we have to focus on 
local properties of physical systems. We therefore now suppose that it is 
possible to define local observables associated with space-time regions. In 
nonrelativistic quantum mechanics this is not problematical [think, for 
example, of observables like a | P(R), where a represents spin and P(R) is 
a projection operator associated with space-time region R; these obser- 
vables are relevant in the EPR-Bohm case]. In nonrelativistic quantum 
mechanics it also makes sense to speak of parts of the wave function 
associated with space-time regions. The modal interpretation then fits in 
with the idea of local properties in the following way. If  a particle is 
described by a wave function, defined over some hyperplane, and if there is 
a local interaction with the environment in two space regions I and II, 
respectively, the total state could look like 

E ci]~bz, i>| + E 4]lPH,J>| + ]~rest) | ]Erest> 
i j 

The states [~bl ) and ]~'11) represent the parts of the particle wave function 
pertinent to regions I and II, respectively; IAz > and ]Bsl ) stand for the 
correlated environment states. The modal interpretation is that one of the 
local properties Ai, i is present in /, and similarly for BII,j in H (with 
probabilities Ic, I = and Idjl =, respectively). 

It is characteristic for the modal interpretation that the maximum 
information at. . . . . .  ,-- , �9 �9 ,,vu~,L u,c puys~ca~ situation in any space-time region consists 
of a specification of the values of physical magnitudes attached to that 
region and their probabilities (the modal aspect). A very natural proposal 
for a causality criterion is therefore the following. A local intervention has 
a causal influence in another space-time region iff there exists at least one 
physical magnitude O in that other region such that if O is applicable, the 
chances of O's possible values change by the interaction in the first region 
(get a different value from what they would have in the absence of the 
interaction). This criterion is equivalent to the requirement that a causal 
interaction between the two space-time regions should at least sometimes 
result in a change of at least one value of at least one physical magnitude 
which could be applicable in the effect region. 
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To apply this criterion, we assume that an intervention takes place in 
space-time region I (an example is the interaction with the localized 
detector of Fig. 1). In the modal interpretation such an intervention must 
be described as a physical interaction; let us say with interaction Hamilto- 
nian H. We further assume that in region H a local interaction with the 
local environment determines (via the interpretation rule, see the above 
example of the form of a total state) that physical magnitude O is 
applicable there. We now ask under which circumstances the interaction H 
could lead to a change in the probabilities of the values of at least one such 
O (so we look at all physical magnitudes that could be applicable in region 
II, namely if a suitable environment were present). 

The answer to this question can easily be given. We are really asking 
for the conditions under which some observables in region H are not 
conserved in the interaction. The given criterion for the presence of causal 
influences is therefore equivalent to the following. There is a causal effect 
of the local intervention represented by H on the situation in another 
region iff for at least one local physical magnitude O associated with that 
other region the commutator between H and O does not vanish: 
[H, O] ~ 0. In other words, there is no causal influence on the other region 
iff for all local observables associated with that other region [H, O] = 0 
holds. 

This requirement, that [H, O] = 0 for regions I and H with spacelike 
separation, is just the "local causality requirement" from local field theory. 
Actually, the situation in relativistic quantum field theory is more compli- 
cated than just described; although there are local observables in field 
theory, in general there are no local states. To apply the modal interpreta- 
tion in that context, the interpretation rule has to be reformulated in terms 
of observables rather than in terms of states. Instead of the biorthonormal- 
ity condition on states, we now get the condition that p ( A |  
~e Ici 12AeBi, with p the state, defined as a functional on the local observable 
algebras, A and B applicable observables with A;, B; as their possible 
values, and Ice 12 the probability of these values. Of course the application of 
the modal interpretation to relativistic quantum field theory should be 
worked out in much more detail; however, such an elaboration does not fit 
into the present article. It seems that as far as the issue of superluminal 
causation is concerned, the same results are found as discussed here. 

The modal interpretation says t ha t / f i t  is true that local interventions 
and local properties can be defined as sketched above, and if the local 
observables associated with space-time regions with spacelike separation 
commute, there is no superluminal causation between those regions. Of 
course, if by contrast it were possible to change the system in region I by 
an interaction which has a nonvanishing commutator with at least one O 
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of region II, there would be superluminal causation--if  it were possible to 
measure Newton-Wigner position locally, this would furnish an example. 
But that is only to be expected. The interesting thing is that the modal 
interpretation denies the existence of such superluminal causal links in the 
context of EPR-like situations, in which all observables of region I (quan- 
tities like particle/spin-density) commute with those of region H. 

It should be noted that this result essentially depends on the central 
idea of the modal interpretation, namely to retain the full superposition as 
the theoretical state at all times and to derive all probabilities from this 
state. It is not assumed that the probability of a property becomes I as 
soon as this property is realized; in the modal interpretation there is no 
collapse of probabilities. It is exactly the assumption of a collapse of prob- 
abilities which is responsible for the verdict, given by some authors (Butter- 
field, 1992), that there is superluminal causation in quantum mechanics. 

8. CONCLUSION 

The modal interpretation attributes physical properties to physical 
systems in such a way that the mathematical structure of quantum mechan- 
ics is accurately reflected. It treats measurements as physical interactions, 
and makes no use of the projection postulate. I have sketched the general 
outline of the interpretation; a more detailed exposition, with a discussion 
of some objections recently put forward in the literature (Albert and 
Loewer, 1990), would transcend the scope of this paper and will be reserved 
for another one. Here, I hope to have made it plausible that: 

1. The modal interpretation treats the measurement process in a way 
that is consonant with the covariance requirements of relativity 
theory. 

2. In this treatment the applicability of physical magnitudes depends 
on the hyperplane on which the state is considered. 

3. But there is, according to the modal interpretation, no superluminal 
causation as long as the condition of local commutativity is ful- 
filled. 
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